View from the 'Driver's Seat'

New Rules of the Road for Developing and Applying Customer Behavior Models

PHARMA MARKET RESEARCH CONFERENCE

Driver Modeling Defined

Family of *inferential* techniques used to explain customer actions by identifying and quantifying predictors

What drives use/affinity for a single brand?

What drives use/affinity for one brand over another?

Rationale and Assumptions

Customers are not always self-aware or fully candid

Statistical relationships between predictors and outcome measure(s) can offer critical insights not otherwise available

The relationships between predictors and outcomes are causal

Despite noise, inferences from modeling may be more trustworthy than what people tell us

Elements of a Driver Model

Sample Inputs

Product Performance Ratings

Manufacturers & Sales Rep Ratings

MD 'Demos'

Predictive Model

Sample Outcomes

- Rx data
- Self-reported Rx
- Brand Affinity Metric

Choosing a Method: The Basics

PROS

CONS

Requires less data

Easily interpreted

Univariate Correlation

No integration

No equation

Does not address intercorrelations

Provides formal model to estimate impact of change in predictors

Handles multiple variables in one model

Stepwise Regression

Requires more sample

Automated eliminates of correlated variables

More Advanced Options

PROS

CONS

Reduces model bias

Finds non-linear relationships

Handles multi-collinearity

Random **Forest**

More labor intensive

Can't estimate impact of changes in predictors

Reduces model bias

Provides equation to estimate impact of changing predictors

Handles multi-collinearity

Shapley Regression

More labor intensive

Only for continuous outcomes

Complex "mother of all models"

Handles multi-collinearity

Structural Equation

Very data and labor-intensive

iROI rarely justified

Small Sample Size

Many MD survey datasets are not large enough to model all the attributes, resulting in overfit models

Rule of thumb: sample size > 10x number of predictor variables

If n = 50, maximum number of input variables for reliable model is 5

Consider using univariate correlations and marketing judgement to eliminate variables

Multi-collinearity

Attributes are frequently correlated with each other – particularly when specific types of efficacy, safety, or tolerability attributes are proliferated

Consider relying on more advanced methods (e.g., Random Forest and Shapley Regression)

Insufficient Variability on Attributes

Infrequent usage opportunities limit inherent variability of what you aim to predict

Consider ratings as outcome

Strong consensus about product performance on an attribute limits its ability to predict

Caution: Lack of predictive power does not = irrelevance

Face Validity and Contradictions

Results that contradict stated importance subject to question

Consider how data have been presented, role of statistical significance, and whether a broader view might help

Market Coherence: Value of Integrated Model

Market Coherence: Value of Integrated Model

Market Coherence: Value of Integrated Model

Caveat: Difference measures can limit variability

Feature Engineering

Contrasting

Combining

Transforming

Methods in Sum

Criteria	Correlation/ Univariate Regression	Step-Wise Regression	Random Forests	Shapley Regressions
Provides a formal model		/		
Ranks all attributes				
Handles multi-collinearity				
Provides statistical significance		/		
Identifies non-linear relationships				
Handles binary outcomes		/	/	
Minimizes model overfit				

Rules for Safe Driving

Start by being inclusive and creative

Feature-engineer to strengthen model

Be prepared for iteration

Prune empirically to improve predictions and give access to broader range of analytic tools

You need someone at the wheel

You Still Need Someone at the Wheel

